The Snap!/ Programming System

Bernat Romagosa i Carrasquer

September 18, 2017

1 Introduction

Snap! was developed by Jens Monig and Brian Harvey under the umbrella of
the University of California at Berkeley, with the objective of bringing the power
of the Scheme programming language and its computer science concepts into a
Scratch-like environment. In fact, for a bunch of years, Snap!/ was developed
as a modified version of Scratch. The ability to construct your own blocks out
of other blocks was one of the foundational principles of this modification of
Scratch, which is why, initially, they named it BYOB (standing for Build Your
Own Blocks). In Snap/, blocks built by the user bear the same weight as any
other preexisting ones. In other words, Snap/ lets us build custom expressions
that look and behave like primitive ones.

Nowadays, Snap! is a separate project with a codebase that is completely
independent from Scratch, and with an outstanding number of new features and
particularities that make it suitable for a serious study of computer science, as
well as for research projects. However, Snap! still keeps intact everything that
Scratch is about and, in a programming language jargon style, we could very
well call it a dialect of the latter.

So, before diving into what makes Snap!/ special, let us see what it inherits
from Scratch and how it can be used for a playful introduction to programming
and computer science.

2 What’s Scratch-Like in Snap!

2.1 The User Interface

In the Snap! user interface, we quickly recognise three major column-shaped
areas that resemble those in Scratch. The leftmost one is called the palette, and
that is where we can find all the primitive expressions, in the shape of blocks.
To build our programs, we will be dragging these blocks into the big, central
area. This striped gray blank space at the center is called the scripting area,
and it is where we combine these blocks together to give behavior to objects in
the system.

Like in Scratch, this central column features three different tabs. Aside from
the default one that we have just described, labeled Scripts, we can also choose
between Costumes and Sounds. These two additional tabs let us deal with
images that our objects can “wear” as costumes, or sounds that our objects can

play.

The third column is a very important one, and it is, in turn, divided into
two rows. The white rectangle at the top right is what we call the Stage:
a programmable micro-world where our objects interact with each other (and
with us) according to the code we have composed for them. When you first
open the Snap!/ editor, the Stage only contains one arrowhead-shaped object,

in homage to Logo, where the programmable Turtle was also represented as an
arrow. We call these objects sprites, and we can see how many of them there
are, what their names are, and a small thumbnail previewing what they look
like at the bottom of the Stage, in an area we call the corral. At the center
left of the corral, we can see a thumbnail of the Stage itself, that can also be
programmed.

2.2 Live, Parallel Blocks

Some blocks-based environments translate graphical blocks into text-based lan-
guages that are then fed into an interpreter or compiler. In that sense, these
environments do not constitute actual programming languages, but graphical,
blocks-based facades for existing text-based languages. In such environments,
we very often have to begin our programs with a predefined “start” block, and
run them by using some kind of “run” button or instruction.

One of the essential differences between these blocks-based language repre-
sentations and Scratch (and thus Snap!) is that the latter does not translate
blocks into any other language. Scratch and Snap! are full-fledged languages
all by themselves, with an evaluator that actually looks up the graphical blocks
and runs them in-place.

This lets us build programs that have multiple start points, and even run
arbitrary pieces of code (block stacks) at our own will, whenever we want to.
Clicking on a block or block stack will run it immediately, and if that block is
meant to return a value, it will actually pop up a speech bubble showing that
value. Scratch and Snap! are live also in the sense that we can modify code
while it runs, without having to stop our scripts and restart them again to see
these changes take effect.

Another key particularity of these languages lies in their parallel execution
model, allowing us to run many processes at the same time. The evaluator takes
care of scheduling the execution of these processes for us and makes sure that -in
the vast majority of the cases- we do not have to worry about race conditions,
deadlocks or any other quirks of concurrent programming.

2.3 Events

As explained in the previous subsection, processes can be started by just clicking
on blocks and block stacks, and it is strongly encouraged to play with the
language in that way, as it allows the programmer to experiment with code
in an interactive way. However, sometimes we are going to need scripts to be
triggered automatically upon given conditions, not just when we decide to click
on them.

In languages like Scratch or Snap!/, the way to bind scripts to events is to
crown them with what we call a hat block. What these hat blocks do is to start

whatever script is attached to them when the event in question occurs.

Examples of such events include pressing a key, moving the mouse, clicking
on an object, receiving a broadcast message or pressing a particular button in
the user interface. Additionally, in Snap/ we also have a generic “when” hat
block that lets us define arbitrary trigger conditions for a script.

3 What Sets Snap! Apart from Scratch

3.1 First Class Heterogeneous Lists

Snap! takes from the Scheme programming language the idea of first class lists
as the only necessary complex data structure, out of which we can build any
other data structure that we can imagine. When we say that something is first
class we mean that it can be used in the same way as any of the primitive data
types in the system, such as a number or a string. This implies that, in Snap/,
we can use lists as if they were, for example, numbers.

As such, we can assign lists to variables, use them as parameters to blocks,
have functions return them, or broadcast and receive them as messages.

Since lists are first class, and since something that is first class can be used
as if it was a simple number, it must be possible to have lists contain other
lists. In fact, by embedding lists inside of other lists is how we can compose any
imaginable data type.

In order for this to work, though, we also need the language to let us store
whatever we want into lists, be it a number, a string, another list, a block or a
sprite. That is, lists should be able to hold anything that the system exposes as
first class. Not only that, but we need lists to be heterogeneous, meaning that
we need to be able to store different data types all mixed together as elements
of the same list.

Having these properties we could, for instance, implement binary trees as
lists where the first element holds the left branch of each node, the second
element holds the root, and the third element holds the right branch.

side = left branch of tree root of tree

report item XD of (tree

-
(LY item @EEED of (tree

root of ~y

BRENERD O ustE 0N JEE

Figure 1: An example of a binary tree implementation. Top: definition of the branch and root
accessor blocks. Bottom: example usage with a tree-list.

To make the tree structure easier to understand, we could build a block
that hides away the internal list representation. Thanks to Snap/’s support for
unicode characters and line breaks in block labels, we could even build a block
that resembles a tree branch.

» U left $nl 'root $nl ~ | right

report list left root right

root of

Figure 2: A more visually appealing tree representation. Top: definition of the tree block. Bottom:
example usage.

Similarly, a stack could be implemented as a list where we only can only
either add a new element or retrieve (and remove) the latest element added.

push element to | stack pop stack

add (element to (stack script variables element

set elemer to item CEE of (stack
delete @CERS of | stack

report element

to list
push TG to stack
push [H to stack
push list [B MEOCEY to ' stack

IIB'E

of |8
<l words]=
]]

pop stack [—

Figure 3: A possible stack implementation. Top: definition of the push and pop blocks. Bottom:

creating and filling a stack with some elements, and popping the last one.

Associations can be thought of as lists where the first element is the key and
the second element is the value, and thus dictionaries can be thought of as lists

of associations.

property property of | dictionary :
for (each association in (dictionary
if key of each association = | property

re| value of each association

report il

key of | association value of ' association

report item &K of (association report item &R of (association

property T of

st (2 0 et ity [Barceiona e

Figure 4: Dictionary data structure. Top: implementation of the key, value and property accessors.

Bottom: looking up the property “city” in a dictionary with three associations.

In a similar fashion, by just grouping elements into lists and building custom
blocks that abstract away the complexity of these structures, we can implement

any other data structure, be it a heap, a hash table or a set.

element fo set | set :

my set contains | element

add (element to | my set

i | to list
add to set my set
i.ldd to set my set
add to set my set
add list] @ & to set my set

{lf something I

add list {1 & 8 to set my set

add [to set my set

Figure 5: Example set implementation. Top: definition of a block that adds elements to a set.
Bottom: trying out the new block and confirming it does not allow any duplicates.

3.1.1 Tables

Snap! offers two different visual representations of lists. The first one is box-
shaped and displays all items contained in the list sequentially from top to
bottom. This representation reflects changes to the list contents in real time,
making it very useful for live inspection of objects and data structures.

list 42| Ti

Figure 6: Traditional list representation.

The second representation is the default one for lists of lists where the first
inner lists has more than two items. This representation is not live, so changes
to the original objects are not reflected in real time, but it is extremely fast
and is capable of displaying hundreds of thousands of rows with almost no
performance penalty, which makes it suitable for inspecting big data sets and
very long collections.

Table view

51006 A B c
20690 13167 13.515 10478
20700 13167 22760 -8.413
28701 13.167 40.553 -23.381
29702 13167 47 460 -22.445
29703 13170 -12.486 22306
20704 13171 17.586 0.467
20705 13175 47.400 -7
29706 13178 -27.679 20.058
20707 13478 23012 -8.666
29708 13179 -3B.655 3414
20700 13479 7.502 22348
28710 13182 2r.13z -12.199
2071 13.182 35.833 -14.275
28712 13183 5401 22 540
20713 13.185 -10.876 20.803
28714 13185 17.397 18.020
20715 13.188 -2B.AT4 20187
29716 13186 15.073 18.032
20717 13.188 18.752 14,807
29718 13.189 18.700 16.310
20710 13100 20.371 -13.306
oK '
7

Figure 7: Tabular representation of a huge list of 51.096 rows where each row is a list containing
three numbers.

3.2 First Class Procedures

One of the main foundational ideas behind Snap!is to let the programmer
extend the system by building blocks that look and behave exactly like the ones
provided by default. We have already seen examples of new block definitions in
the previous section, when implementing different data structures, but we have
not explained them in detail.

To create a new block in Snap!/ we need to either head to the Variables
category and click on the Make a block button, or right click (command-click
on MacOSX) anywhere in the scripting pane and select make a block. .. from
the contextual menu.

This will open a dialog where we will be asked to select a category and give
a name to the new block. Additionally, we will be able to choose among three
different kinds of blocks, namely commands, reporters or predicates.

Command blocks are the ones that can be stacked to other blocks. They
are called commands because they perform an action. Reporters, on the other
hand, are blocks that can be embedded into input slots of other blocks, and
they return values. Predicates are a particular case of reporters, in particular

the kind that return a Boolean value.

As an example, we will be creating a new block that draws a cross, and we
will place it under the Pen category. Since this block performs an action, it will
be a command block, and since we want every sprite in the project to be able
to run it, we will select for all sprites.

Make a block

Motion ¥ Control

Looks Sensing
Sound ¥ Operators
¥ Variables

Other

|CTDSS

w Fr[;r,r.’rrj Predicate 3

& for all sprites 0 for this sprite only

OK J Cancel J

Figure 8: Creating a new cross global command block under the Pen category.

Accepting this dialog will show another dialog where we can define our block.

Block Editor

pen down

move [P steps
move @E[P steps
turn * @) degrees

OK J Apply J Cancel J

V7

Figure 9: The cross block sets the pen down, then moves the sprite in a cross pattern, then sets
the pen back up again.

Blocks in Snap! can have parameters, which we can use to modify their
behavior accordingly. We could, for instance, add a length argument to the cross
block that defines how long the four arms of the resulting cross drawing are. To
do so, we need to edit the block by selecting edit. .. from its contextual menu
(right-click on the block for GNU/Linux or Windows users, and Command-click
for MacOSX users), then add the missing text and parameters by using the little
plus-sign-shaped buttons on the block label.

cross of length ((length #

|;en down

repeat P

— length steps
move [@ - length
turn & @D degrees

Figure 10: The new cross block definition, after having added a new of length text part and a
length parameter to it. The pound symbol next to the parameter indicates that we are expecting
it to be a number.

This new block can be now used as if it was any other block in the system,
and will be graphically and functionally indistinguishable from the native ones.

go te x: | plek random @& to TP y: pick random EITP to ELEH

eross of length | pick random) to 5P

- +

=+

Figure 11: The cross block being used to draw crosses of random arm length.

Custom blocks being first class means that we can also use them to define
other custom blocks, or even to define themselves recursively. That allows us to

build a new fractal cross block that makes use of itself to draw a fractal cross
figure, where each arm ends in a cross half the size of the previous one and
results in a square pattern.

fractal cress of length (length &

it length =[

pen down

move (IE0gHAD steps fractal of length &
fractal of length length ¢ EP
move (@} - (length steps

turn * P degrees

pen up

Figure 12: The new fractal cross block definition, plus an example of the drawing it generates
when used with an arm length of 60.

3.3 Closures

Closures are programming constructs that allow us to deal with code as if it was
data. Full closures capture the context in which they are created, including the
values of any variables in their scope. A full closure is, in a way, like taking a
snapshot of a piece of code at a particular moment in time, so that invoking that
closure later on will be like running it at the moment of its creation, including
the state of the program at that past moment.

This lets us play with code in a substantially different way, even allowing
us to define our own control structures. In fact, some computer languages -
like Smalltalk- implement all of their control structures by means of closures,
without the need of any primitive expressions or reserved keywords.

Snap! represents closures as ring blocks. A ring is a special graphical struc-

10

ture that encloses scripts and turns them into first class data.

Figure 13: A ringified addition block.

A ring is, actually, a procedure without a name, and clicking on the right-
pointing arrow on its right edge will let us add parameters to this procedure.

Figure 14: A ringified addition block with a parameter.

But these procedures are special in that clicking on them will not result in
them running. As explained before, these constructs convert code into data, so
clicking on them will actually just return the data they hold (that is, the closure
itself). In other words, if we understand procedures as verbs, then putting a
ring around a verb is turning it into a noun.

To run these, we need to use one of the two special blocks Snap! provides.
Namely, run and call. The first one is meant to be used to execute a ring as if
it was a command block, whereas the second one will execute it as if it was a
reporter. That is, the second one -call- will expect the ring to return a value.
with nputs [| p|)

calll 'a + @ | Input names: fa

Figure 15: Calling the ringified addition block with one parameters and getting back the result
the adding 1 to that parameter.

We have just created an anonymous procedure that adds 1 to any number,
but up to here it seems that rings only add complexity to something we could
have very much easily achieved by just using the addition block by itself, so let
us find an example that shows the value of closures a little bit better.

Rings turn any stack of blocks into a parametrizable function that can be
treated as data and, as such, can be passed to another procedure as a parameter,
in the same way that we can pass a number, a string or a boolean as a parameter.
This allows us to, for instance, map the items of a list into a new list where
each item has been applied a function, without the need of using any iterators
or indexes. From a mathematical point of view, this could be seen as the
application of a function over a vector.

map|Ta + &P | input names: a over UL BIED

Figure 16: Mapping the add I anonymous procedure to a list, and getting back a new list where
each item has been incremented by 1.

11

As a little syntax sugar goodie, Snap/ will automatically fill up any empty
input inside the body of a ring, letting us rewrite the previous code in a shorter
form with exactly the same functionality.

map | + &P over LS BI0B &)

Figure 17: The same application of map over a list, but this time with automatic parameter filling.

This automatic parameter filling lets us easily map a list into another list
where each item maps to its own square.

map | i + &

Figure 18: Using the automatic parameter filling feature to square all numbers in a list.

As a matter of fact, the map block is actually implemented in Snap! itself
and, internally, it takes a function as a parameter and iterates over a list to
apply that function to each of its items.

map | function A over [list
script variables ' new list
set newlist |to list

each item jn list

| ' call function |with inputs each item - new list

report new list

Figure 19: A simple, iterative implementation of the map block.

As a curiosity, even the for each block used inside the map block has been
implemented as a custom block that takes a function as a parameter and runs
it for each item in a list.

12

for each item 1 in list : action A

script variables ' index
repeat length of (list
change ind py &P

set eac 1 | to item (index of (list

run (100 with inputs (05T ST

Figure 20: A simple, iterative implementation of the for each block.

These functions that take other functions as parameters and apply them
to every item on a list are called Higher Order Functions, and they represent
one of the most useful application of closures in computer science. Indexes and
iterations are processes that are much closer to the way computers work than
to the way humans think, which is why, in functional programming, HOF's are
the natural way to transform lists and perform operations over their items.

13

	Introduction
	What’s Scratch-Like in Snap!
	The User Interface
	Live, Parallel Blocks
	Events

	What Sets Snap! Apart from Scratch
	First Class Heterogeneous Lists
	Tables

	First Class Procedures
	Closures

